
RDQuery∗ - Querying Relational Databases
on-the-fly with RDF-QL

Cristian Pérez de Laborda Matthäus Zloch Stefan Conrad

Institute of Computer Science
Heinrich-Heine-Universität Düsseldorf

Universitätsstr. 1
D-40225 Düsseldorf, Germany

{perezdel, conrad}@cs.uni-duesseldorf.de, matthaeus.zloch@uni-duesseldorf.de

ABSTRACT
One of the main drawbacks of the Semantic Web is the lack
of semantically rich data, since most of the information is
still stored in relational databases. We present RDQuery, a
wrapper system which enables Semantic Web applications to
access and query data actually stored in relational databases
using their own built-in functionality. RDQuery automati-
cally translates SPARQL and RDQL queries into SQL. The
translation process is based on the Relational.OWL repre-
sentation of relational databases and does not depend on
the local schema or the underlying database management
system.

1. INTRODUCTION
With his vision of a Semantic Web, Tim Berners-Lee in-
spired the database and knowledge representation commu-
nities to build up the next generation Web. Despite its
sophisticated technologies like RDF [3] and OWL [4], the
Semantic Web still has to face its major drawback, the lack
of data. In fact, data is usually still stored in relational
databases where it cannot be accessed directly by Semantic
Web applications. Consequently, a well-defined mapping of
relational to semantic data is required.

Although we can convert the schema of a relational database
automatically into an RDF/OWL ontology and represent its
data items as instances of this data source specific ontol-
ogy [6], barely a database is static. Consequently, this data
and schema extract may rapidly become outdated. Indeed,
a schema or data extraction could be initiated, whenever
a data or schema modification occurs within the database.
Nevertheless, dealing with dynamic data sources, a direct
access to such data sources would be preferable.

∗RDQuery is published under GNU GPL and can be down-
loaded at http://sourceforge.net/projects/rdquery/.

Posters and Demos of the 15th International Conference on Knowledge
Engineering and Knowledge Management, EKAW 2006 Podebrady, Czech
Republic, 2nd-6th October, 2006

2. RDQuery
RDQuery is a wrapper system which makes relational
databases accessible for Semantic Web applications using an
RDF query language (RDF-QL). RDQuery currently sup-
ports RDQL [9] and its successor SPARQL [8], which will
hopefully be recommended soon by the W3C as the de facto
standard query language for RDF. Nevertheless, RDQuery
may easily be adapted to future developments adding spe-
cific parsers for other query languages. Figure 1 gives an
overview of the RDQuery system architecture and depicts
the path passed by a query until it reaches the relational
database as its destination.

RDQuery Engine

SemanticWeb

Relational

Database

Relational

Database

JDBC JDBC

RDQL
Parser

Jena Syntax

Check

SPARQL
Parser

Jena Syntax

Check

Parser

Syntax

Check

Figure 1: RDQuery System Architecture

First, the syntax of the query is validated and its relevant
parts (e.g. the WHERE clause) are extracted using the built-
in syntax checker of the JENA Framework [2]. Thereupon,
the relevant parts of the query are once again parsed using
an own JavaCC-based [1] grammar, in order to detect the
properties of the query. Based on this information, the cor-
responding SQL query is built up. The resulting query is
then executed and processed on the original database with-
out having to translate the original database into a Rela-
tional.OWL representation, which thus only exists virtually.

The query translation is based on the results presented in [5]
and [7], where we examined possible RDQL and SPARQL

http://sourceforge.net/projects/rdquery/


correspondents for the basic expressions of the relational
algebra. Each of the five main operations {σ, π,∪,−,×}
of the relational algebra has characteristic appearances
within a Semantic Web query. A selection, i.e. the WHERE

part of an SQL query, corresponds to a triple similar to
{?x dbinst:TABLE.COLUMN ’value’}, where ?x is a free
variable and TABLE.COLUMN, the column where the value

shall be matched. Similar mappings can be given for the
remaining operations of the relational algebra.

Example: The SPARQL query

CONSTRUCT {?a ?b ?c}
WHERE {{?a ?b ?c}.

{?a rdf:type db:customers}.
{?a db:customers.City ’Berlin’}.

FILTER (?b=db:customers.ContactName)}

is automatically recognized by RDQuery as the SPARQL
correspondent of a selection, followed by a projection. It
thus translates the given query automatically into the fol-
lowing SQL query:

SELECT customers.ContactName

FROM customers

WHERE customers.City = "Berlin"

After the query execution on the original database, the user
may opt for an RDF processable representation of the query
result. This feature of RDQuery is especially important for
Semantic Web applications using a query language, which
is not closed within RDF (e.g. RDQL), where the result of
such a query is not a valid RDF graph, but a list of possible
variable bindings.

The whole query transformation process is identical for any
relational database and does not depend on the local schema
or the underlying database management system. Neverthe-
less, the queries have to match the instances of the Rela-
tional.OWL ontology. For a detailed description on how
to simulate the main operators of the relational algebra in
RDQL and SPARQL, we again refer to [5] and [7].

3. DEMONSTRATION
The presentation of the RDQuery system consists of two
main parts. We will first introduce the Java-based user in-
terface of RDQuery, where the users can interactively query
relational databases using RDQL and SPARQL, the RDF
query languages currently implemented in the system. The
GUI enables the users to follow the translation process, to
verify the generated SQL query, and to regard the result set
returned from the database quickly. Furthermore, the users
can access their own query history and get a general idea
of the tables stored in the corresponding database. We will
start with the simulation of the basic relational algebra op-
erators and get to more complex queries containing several
join operations. Thereby we will describe the basic func-
tionality of RDQuery and explain in-depth, how the queries
are parsed and translated into SQL.

In the second part of the presentation we will demon-
strate how Semantic Web applications can use the API of
RDQuery to query and access information actually stored in

relational databases, as if this data would actually be a part
of the Semantic Web. Additionally, we will show how to
create a mapping from the relational model to an arbitrary
ontology simply using RDQuery and SPARQL. For this pur-
pose we will create a SPARQL query, which actually maps
the data stored in a typical relational database to instances
of the ‘Friend of a Friend’ (FOAF) ontology. This data is
then accessed by an application to perform several reasoning
tasks, e.g. find people within the same social network, work-
ing on related projects, living in the same city, or listening
to similar music. These reasoning tasks are all processed by
the application without actually noticing, that the data is
stored in and modeled for a relational database and not for
the Semantic Web.

To illustrate the independency of the translation process
from the concrete database schema and the underlying
database management system, all queries presented in both
parts of the presentation will be performed using several
databases stored in different database systems.

4. REFERENCES
[1] JavaCC - Java Compiler Compiler.

https://javacc.dev.java.net/, 2006.

[2] Jena - A Semantic Web Framework for Java.
http://jena.sourceforge.net/, 2006.

[3] F. Manola and E. Miller. RDF primer. http:
//www.w3.org/TR/2004/REC-rdf-primer-20040210/,
2004. W3C Recommendation.

[4] D. L. McGuinness and F. van Harmelen. OWL Web
Ontology Language Overview. http://www.w3.org/TR/
2004/REC-owl-features-20040210/, 2004. W3C
Recommendation.

[5] C. Pérez de Laborda and S. Conrad. Querying
Relational Databases with RDQL. In Berliner XML
Tage, pages 161–172, 2005.

[6] C. Pérez de Laborda and S. Conrad. Relational.OWL -
A Data and Schema Representation Format Based on
OWL. In Conceptual Modelling 2005, Second
Asia-Pacific Conference on Conceptual Modelling
(APCCM2005), Newcastle, NSW, Australia,
January/February 2005, volume 43 of CRPIT, pages
89–96. Australian Computer Society, 2005.

[7] C. Pérez de Laborda and S. Conrad. Bringing
Relational Data into the Semantic Web using SPARQL
and Relational.OWL. In Semantic Web and Databases,
Third International Workshop, SWDB 2006,
Proceedings of the 22nd International Conference on
Data Engineering Workshops, ICDE 2006, 3-7 April
2006, Atlanta, GA, USA. IEEE Computer Society,
2006.

[8] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. http://www.w3.org/TR/2006/
CR-rdf-sparql-query-20060406/, 2006. W3C
Candidate Recommendation.

[9] A. Seaborne. RDQL - A Query Language for RDF.
http://www.w3.org/Submission/2004/

SUBM-RDQL-20040109/, 2004. W3C Member
Submission.

https://javacc.dev.java.net/
http://jena.sourceforge.net/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

	Introduction
	RDQuery
	Demonstration
	References 

