
Link Patterns for Modeling Information Grids
and P2P Networks

Christopher Popfinger, Cristian Pérez de Laborda, and Stefan Conrad

Institute of Computer Science
Heinrich-Heine-Universität Düsseldorf

D-40225 Düsseldorf, Germany
{popfinger, perezdel, conrad}@cs.uni-duesseldorf.de

Abstract. Collaborative work requires, more than ever, access to data
located on multiple autonomous and heterogeneous data sources. The
development of these novel information platforms, referred to as infor-
mation or data grids, and the evolving databases based on P2P concepts,
need appropriate modeling and description mechanisms. In this paper we
propose the Link Pattern Catalog as a modeling guideline for recurring
problems appearing during the design or description of information grids
and P2P networks. For this purpose we introduce the Data Link Model-
ing Language, a language for describing and modeling virtually any kind
of data flows in information sharing environments.

1 Introduction

With the rise of filesharing systems like Napster or Gnutella the database com-
munity started to seriously adopt the idea of P2P systems to the formerly known
loosely coupled databases. While the original systems were only designed to share
simple files among a huge amount of peers, we are not restricted to these data
sources any more. New developments allow peers to share virtually any data, no
matter if it is originated from a relational, object-oriented, or XML database. In
fact, the data may still come from ordinary flat files.

Apparently we have to deal with a very heterogeneous environment of data
sources sharing data, referred to as an information or data grid [4]. If we al-
low participants to join or leave information grids at any time (e.g. using P2P
concepts [3]), we must take a constantly changing constellation of peers into
account. Any information grid built up by these peers can either evolve dynam-
ically or be planned beforehand. In both cases we need a concept in order to
describe and understand the interactions among the peers involved. Having such
a mechanism, we could not only detect single data exchanges, but even model
and optimize complex data flows of the entire system.

In this paper we adopt commonly used methods for designing data exchanges
among peers as Link Patterns, suitable especially for information grids and P2P
networks. Analogous to the intention of the Design Pattern Catalog used for
object-oriented software development [8] we want to provide modeling guidelines
for engineers and database designers, engaged in understanding, remodeling, or



building up an information grid. Thus information grid architects are provided
with a common vocabulary for design and communication purposes.

Up to now data flows in information grids were designed without having a
formal background leading to individual solutions for a specific problem. These
were only known to a circlet of developers involved into that project. Other
designers, engaged with a similar problem would never get in contact with these
results and thus make the same mistakes again. Different modeling techniques
make it difficult to exchange successfully implemented solutions.

Link Patterns do not claim to introduce novel techniques for sharing, access-
ing, or processing data in shared environments, but a framework for being able
to understand, describe, and model their data flows. They provide a description
of basic interactions between data sources and operations on the data exchanged,
resulting in a catalog of reusable conceptual units.

A developer may choose Link Patterns to model and describe complex data
flows, to identify a single point of failure, or to avoid or consciously insert redun-
dant data exchanges. The composition of Link Patterns is an essential feature of
our design method. It gives us the possibility to represent a structured visual-
ization not only of single data linkages, but of the entire information platform.

The remainder of this paper is organized as follows. In section 2 we introduce
DLML, a language for modeling data flows, followed by a structural description
of the Link Patterns in section 3. Section 4 specifies the Link Pattern Catalog,
followed by an example. Section 6 catches up some related work and section 7
concludes.

2 The Data Link Modeling Language (DLML)

2.1 Introduction

The Data Link Modeling Language (DLML) is based on the Unified Modeling

Language (UML) [8] notation, but slightly modifies existing components, adds
additional elements, and thus extends its functionality. It is a language for mod-
eling, visualizing, and optimizing virtually any kind of data flows in information
sharing environments.

Modeling: DLML is a language, suitable for modeling, planning, and re-
engineering data flows in information sharing environments, e.g. information
grids, systematically. A Data Link Model built up using this language reflects
the logical and not the physical structure of the entire system. It enables the
developer to specify the properties and the behavior of existing and novel
systems, in order to describe and understand their basic functionalities.

Visualizing: Visualizing data flows is an important assistance in understand-
ing the structure and behavior of an information platform. The impact of
ER [13] and UML has proven, that a system is easier to grasp and less
error-prone, if a graphical visualization technique is provided, which uses
a well-defined set of graphical symbols, understood by a broad community.
Especially within the analysis of systems with distributed information, it is



favorable to have a method, suitable for drawing up a map of relationships
between the participating peers, in order to depict global data flows.

Optimizing: Besides the modeling and visualization of an information sharing
environment, DLML can be useful to optimize the whole distributed data
management. Redundant data flows and data stocks can systematically be
detected and removed, leading to a higher performance of the entire system.
Of course, redundancy may explicitly be wanted, in order to achieve a higher
fail-safety or a faster access to the data.

Due to the characteristics mentioned above, the Data Link Modeling Lan-
guage is especially suitable for visualizing data flows in distributed information
grids. It may furthermore be employed to model data management in enter-
prise information systems, data integration and migration scenarios, or data
warehouses, i.e. wherever data has to be accessed across multiple different data
sources.

2.2 Components

Since DLML is based on UML, its diagrams are constructed in an analogous
manner, using a well-defined set of building blocks according to specific rules.
The following components may be used in DLML (Fig. 1) to build up a Data
Link Model:

Data Node CommentApplication Node

Data Flow

<< copy >>

Data Node
with Role

G
Location

Label

NodeName:DataStockName

{location = Server A}

Fig. 1. DLML Components

Nodes: Nodes are data sources, data targets, or applications, usually involved
in a data exchange process. They may either be isolated or connected through
at least one data flow. A data source may be a database (e.g. relational), a
flat file (e.g. XML), or something similar, offering data, whereas a data target
receives data and stores it locally. An application is a software unit, which
accesses or generates data, without maintaining an own physical data stock.
Physical data stocks are represented in DLML by Data Nodes, applications
by Application Nodes.

Label: Each node can have a label. It consists of generally two parts separated
by a colon: the node name and the data stock name or application name

respectively. The data stock name identifies the combination of data and



schema information stored at this node. If this data is replicated as an exact
and complete copy to another node, the data target has to use the same data
stock name. The application is identified by the application name. Analogous
to the data stock name, any further instances of the same application have
the same application name. In both cases we use the node name to distinguish
nodes with the same data stock or application name. Otherwise the node
name is optional.

Location: The optional location tagged value specifies the physical location of
the node. It either specifies an IP address, a server name, or a room number,
helping the developer to locate the Data or Application Node.

Role: A node providing a certain functionality on the data processed, may have
a functional role (e.g. filtering or integrating data). This role will usually be
implemented as a kind of application, operating directly on the incoming or
outgoing data. The name of the role or its abbreviation is placed directly
inside the symbol of the node. This information is not only useful for increas-
ing the readability of the model, but also for being able to identify complex
relationships.

Data Flow: The data exchange between exactly one data source and one data
target is called data flow. The arrow symbolizes the direction, in which data
is being sent. A node may have multiple incoming and outgoing data flows.
Optionally each data flow may be labeled concerning its behavior, i.e. if the
data is being replicated (<<copy>>) to the data target or if it is just accessed
(<<access>>). If data is being synchronized, both data flow arrows may be
replaced by one single arrow with two arrowheads.

Comment: A comment may be attached to a component, in order to provide
additional information about a node or a data flow. These explanations may
concern a node’s role, filter criteria, implementation hints, data flow proper-
ties, or further annotations important for the comprehension of the model.

2.3 Example

We now illustrate the usage of the Data Link Modeling Language with a simpli-
fied example. Consider a worldwide operating wholesaler, with an autonomous
overseas branch. The headquarters is responsible for maintaining the prod-
uct catalog (hq:products) with its price list, while the customers database
(:customers) is administrated by the branch itself (Fig. 2).

The overseas branch is connected to the headquarters by a dial-up connec-
tion, not sufficient for accessing the database permanently. For this reason, the
product catalog is replicated to the branch twice a day (branch:products),
where the data may be accessed by the local employees. The branch manage-
ment uses a special application (:managementApp) to access both data stocks in
order to generate the annual report for the headquarters.



<< copy >>

hq:products

{location = hq.myserver.com}

branch:products

{location = Server A}

:managementApp

{location = New York}

:customersDial-up connection

synchronized twice

a day

Fig. 2. DLML Example

3 Link Patterns

In order to be able to provide a catalog of essential Link Patterns it is necessary
to understand what a Link Pattern is. Therefore we present the elements a Link
Pattern is composed of, including its name, its classification, or its description.
For graphical representation we use the Data Link Modeling Language, specified
above.

3.1 Elements of a Link Pattern

In this section we present the description of the Link Pattern structure. It is
based on the Design Pattern Catalog of Gamma et al. [8], which has reached
great acceptance within the software engineering community. Thus a developer
is able to quickly understand and adopt the main concept of each Link Pattern
for his own purposes. Each Link Pattern is described by the following elements:

Name: The name of a Link Pattern is its unique identifier. It has to give a first
hint on how the pattern should be used. The name is substantial for the
communication between or within groups of developers.

Classification: A Link Pattern is classified according to the categories de-
scribed in section 3.2. The classification organizes existing and future pat-
terns depending on their functionality.

Motivation: Motivating the usage of the pattern is very important, since it
explains the developer figuratively the basic functionality. This is done using
a small scenario, which illustrates a possible application field of the pattern.
Therewith the developer is able to understand and follow the more detailed
descriptions in the further sections.

Graphical Representation: The most important part of the pattern descrip-
tion is the graphical representation. It is a DLML diagram and describes the
composition and intention of the pattern in an intuitive way. The developer
is advised to adopt this representation, wherever he has identified the related
functionality in his own information grid model.



Description: The composition of the Link Pattern is described in-depth in this
section, including every single component and its detailed functionality. The
explanation of the local operations on each node and data flows between the
components involved, points up the intended functionality of the whole pat-
tern described. This description shall give the user both, a guidance through
the identification process and instructions for its proper usage.

Challenges: Besides the general instructions given in the prior section, this sec-
tion shall give hints for sources of error in the implementation process of this
pattern. The developer shall get ideas, of how to identify and avoid pitfalls,
arising in a certain context (e.g. interaction with other Link Patterns).

3.2 Classification

A classification of the Link Pattern Catalog shall provide an organized access
to all Link Patterns presented. Patterns situated in the same class have similar
structural or functional properties, depending on the complexity of their imple-
mentation. Although a categorization of a very limited number of patterns may
seem superfluous, we have decided to include this into our Link Pattern Cata-
log, since it shall help developers to allocate and evaluate the pattern required.
Furthermore it should stimulate the developer to find and rate novel patterns,
not yet included in the catalog.

Link Patterns

Elementary Composed

Data Sensitive Data Independent

Fig. 3. Link Pattern Catalog Classification

Figure 3 depicts the classification of our Link Pattern Catalog we have chosen.
The patterns presented can be divided into two main categories, Elementary

Link Patterns and Composed Link Patterns. In fact this classification is not
completed, but shall provide a starting point for further extension.

Elementary Link Pattern: An Elementary Link Pattern is the smallest unit
for building up an information grid model. It consists of exclusively one single
node and at least one data flow connected to it. Each Data Link Model is
composed of several Elementary Link Patterns, linked together with data
flows in an appropriate way. Please note, that a single Elementary Link
Pattern is not yet a reasonable Data Link Model, since any data flow must
have at least one node offering data and one node receiving data.
Elementary Link Patterns are easy to understand and easy to implement,
since they concern only a single node, a small set of data flows, and do not
include basically any data processing logic. It must be pointed out, that the



Elementary Link Patterns consist only of two main patterns, the Basic Data

Node and the Basic Application Node, and its derivatives (e.g. Publisher and
Generator, discussed in section 4).

Composed Link Pattern: Composed Link Patterns are built up by combin-
ing at least two Elementary Link patterns in a specific way, in order to
realize a particular functionality. A Composed Link Pattern may hereby be
composed out of both, Elementary or other Composed Link Patterns. A pat-
tern has to represent a prototype or solution for a recurring sort of problem.
Please keep in mind, that an arbitrary combination of different patterns will
not automatically lead to a reasonable Composed Link Pattern.
In contrast to the Elementary Link Patterns, we have to deal in this context
with a more complex kind of patterns. They do not only include more nodes,
but may even represent a quite sophisticated way of linking them. Besides,
each node may additionally process the data received or sent. The fact, that
it may act differently depending on the data involved, is an essential property
of Composed Link Patterns and justifies the creation of two subclasses:

Data Sensitive Link Pattern: As soon as a node included in a Composed
Link Pattern acts depending on the data it processes, the entire pattern
is called a Data Sensitive Link Pattern. This data processing logic im-
plemented on such a node may depend on and be applied to incoming
and/or outgoing data. The operations of this application can either cre-
ate, alter, or filter data.

Data Independent Link Pattern: Any Composed Link Pattern, not
classified as Data Sensitive, belongs to this class. In contrast to the pat-
terns described above, data is not being modified, but sent or received
as is. A rather crucial topic is the topology of the nodes and data flows
involved, which is most relevant for the creation and functionality of this
kind of patterns.

3.3 Usage

This section describes how Link Patterns can be useful to develop, maintain,
analyze, or optimize both, straightforward and complex data flows in information
grids. There are basically two methods, how Link Patterns can improve the work
of developers:

Analyzing existing systems: Many existing information grids have arisen
during the years without being planned centrally or consistently. Even if
they were planned initially, they usually tend to spread in an uncontrolled
way. In such an environment it is vital to have supporting tools, helping to
understand and later optimize an existing system.
First of all a map or model of the existing system has to be created, e.g. with
DLML presented in section 2. Afterwards we examine successively smaller
parts of the model, in order to match them to existing Link Patterns of the
Catalog. As a result we get a revised model containing basic information
on the composition and functionality of subsystems, including their data



processing and data flows. With this information in mind, we are now able
to derive information on data flows and interaction of nodes inside the Data
Link Model. This enables us to perform optimizations like detecting and
eliminating vulnerabilities or handling redundancies.
Link Patterns may thus not replace human expertise for understanding ex-
isting information grids, but give support in the process of recognizing global
data flows and therewith interpret the purpose of the entire system.

Composing new models: As already mentioned a Link Pattern may not only
improve the process of understanding an existing information grid, but is also
a support for modeling new systems. An information grid architect needs to
have a clear idea of what the system should do. Depending on the data
sources available, the local requirements on the nodes, and the results he
wants to achieve, he can combine nodes and data flows, according to Link
Patterns, until the entire system realizes the intended functionality. Link
Patterns hereby guarantee a common language, understood by other devel-
opers, not yet involved in the modeling. Each developer is thus able to quickly
get a general idea of the system modeled at any time. Furthermore they ac-
celerate the development process, since they provide well tried solutions for
recurring problems, leading to a performant system of high quality.

4 Link Pattern Catalog

In this section we finally give an introduction into the Link Pattern Catalog. This
includes a graphical overview over the main Link Patterns in DLML, as well as
a detailed description of selected patterns. As mentioned beforehand the Link
Patterns can be classified according to the classification presented in section 3.2.
Since any Composed Link Pattern either belongs to the Data Sensitive or to the
Data Independent Link Patterns, we organize the catalog as follows:

Elementary Link Patterns

The Elementary Link Patterns are the basic building blocks of a Data Link
Model. They consist of the two basic patterns, described below, and its deriva-
tives. All Elementary Link Patterns are depicted in Figure 4.

Basic Data Node Subscriber Publisher

ConsumerBasic Application Node Generator

Fig. 4. Elementary Link Patterns



Basic Data Node
Classification: Elementary Link Pattern
Motivation: This pattern is one of the basic building blocks of a Data Link

Model. Each incoming or outgoing data flow of a Data Node is modeled
using this Link Pattern.

Graphical Representation: See Figure 4
Description: A Basic Data Node is a DLML Data Node, which receives data

through incoming data flows, stores it locally, and simultaneously propagates
data, held in its own data stock. If a Basic Data Node does only have outgoing
or incoming data flows, it applies the Publisher Pattern or the Subscriber

Pattern respectively. If it does neither have any incoming, nor any outgoing
data flows, the Data Node is called isolated.

Challenges: One of the main challenges to take in this pattern is the proper
coordination of incoming and outgoing data flows. At first all incoming data
has to be stored permanently on the local data stock, without violating any
constraints, before it may be propagated again to other nodes.

Basic Application Node
Classification: Elementary Link Pattern
Motivation: This pattern is one of the basic building blocks of a Data Link

Model. All applications, relevant for a Data Link Model, are based on this
pattern.

Graphical Representation: See Figure 4
Description: An application interacting with arbitrary Data or Application

Nodes, is represented by this pattern. The application does not only receive,
but also propagate data. If a Basic Application Node does only have outgoing
or incoming data flows, it applies the Generator Pattern or the Consumer

Pattern respectively. If it does neither have any incoming nor any outgoing
data flows, the Application Node is called isolated.

Challenges: Propagated data can either be received or generated. All data
manipulations on incoming data, which have to be propagated, have to be
processed in real-time, without storing data locally.

Publisher - Subscriber Synchronize

<< copy >>

Data Hub

Data Processor

Data Backbone

Distributor Fallback

<< copy >>

Fallback connection,

activate only in case

of failure

Fig. 5. Data Independent Link Patterns



Data Independent Link Patterns

The Data Independent Link Patterns belong to the Composed Link Patterns.
These patterns describe a functionality, which only depends on their structure,
i.e. the way nodes and data flows are combined. A graphical overview of the
patterns in this class is given in Figure 5, of which the Data Backbone is described
exemplarily.

Data Backbone

Classification: Data Independent Link Pattern
Motivation: A Data Backbone is used, wherever a centralization of data shar-

ing or data access has to be realized. This is typically required, if data stocks
are re-centralized, a central authority wants to keep track on all data flows,
or data exchanges have to be established among multiple data stocks and
applications.

Graphical Representation: See Figure 5
Description: The Data Backbone Pattern consists of several nodes, linked to-

gether in a specific way. A designated node, called Data Backbone, is either
data source or data target for all data flows in this pattern. All nodes, in-
cluding the Data Backbone itself, can be data stocks or applications. Data is
always propagated from data sources to the Data Backbone, where it may be
accessed or propagated once again to other target nodes. Direct data flows
between nodes, which are not the Data Backbone, are avoided.

Challenges: Since the Data Backbone is involved in all data flows, it has a
crucial position in this part of the information grid. Thus, a Data Backbone
node has to provide a high quality of service, concerning disk space, network
connection, and processing performance. If the quality of service required
cannot be provided, the Data Backbone may easily become a bottleneck.
Furthermore a breakdown of this node could lead to a collapse of the entire
data sharing infrastructure, which makes it to a single point of failure.

Data Sensitive Link Patterns

Contrary to the Data Independent Link Patterns, the patterns described in this
section are not only classified according to their structural properties, but partic-
ularly because of their data processing functionality. A graphical representation
of these Data Sensitive Link Patterns can be found in Figure 6, while a detailed
description is only given for the Gatekeeper Pattern.

Gatekeeper

Classification: Data Sensitive Link Pattern
Motivation: A Gatekeeper is used to control data flows according to specific

rules (e.g. Access Control Lists), stored separately from the data processed.
It is responsible for providing the target nodes with the accessible data re-
quired. The application of this pattern is not limited to data security matters.
It may actually be applied to any node, which has to supply different target
nodes with specific (e.g. manipulated or filtered) data flows.



Aggregator

A

Cleaner

C

Integrator

I

<< access >>

Gatekeeper

G

<< access >>

Switch

S

Fig. 6. Data Sensitive Link Patterns

Graphical Representation: See Figure 6
Description: A Gatekeeper is a designated node, which distributes data ac-

cording to specific rules, eventually stored separately. Local or incoming
data of a Gatekeeper is accessed by target nodes. Before this access can be
admitted, the Gatekeeper has to check the permissions. Thus, corresponding
to the rules processed, neither all data stored in the Gatekeeper, nor all data
requested by the target nodes has to be transmitted.

Challenges: The rules and techniques, which are used by the Gatekeeper in
order to secure access to the data, have to be robust and safe. The Gatekeeper
needs a mechanism to identify and authenticate the source and target nodes
(e.g. IP address, public key, username and password, or identifiers [11]),
which may be stored in a separated data stock. Due to its vital position in
the exchange process, this information has to be protected from unauthorized
access. The Gatekeeper must be able to rely on the correctness, authenticity,
and availability of the rules required.

5 Example

This section provides an example of how to model a new information grid of a
worldwide operating company. The headquarters of the company are located in
New York. It has additionally branches in Düsseldorf (head office of the European
branches), Paris, Bangalore, and Hong Kong. Each branch maintains its own
database containing sales figures, collected by local applications. For backup
and subsequent data analysis, this data has to be replicated to the headquarters.
Additionally, the Düsseldorf branch needs to be informed about the ongoing sales
activities of the Paris branch. To simplify the centralized backup, the company
has decided to forbid any data exchanges between the single branches.

The central component of this infrastructure is the backup system in New
York. It collects the sales data from all branches, without integrating them.
Additionally it provides the Düsseldorf branch with all the information required
from Paris. Since the headquarters in New York want to analyze the entire data
stock of the company, a data warehouse, based on the data of the backup system,
is set up. Having a certain local autonomy, the data provided by the European
branches and the remaining branches have some structural differences. For this
reason, the data has to be integrated prior to the aggregation required for the
data warehousing analysis.



Using the Link Patterns proposed in this paper, we are now able to model
the enterprise information grid as depicted in Figure 7.

I,A

data stock backup

no integration so far

<< access >>

<< copy >>

<< copy >>

<<
co

py
>>

<<
copy

>>

<<
copy

>>

G

:SalesD

{location = Düsseldorf}

:SalesP

{location = Paris}

:SalesB

{location = Bangalore}

:DW

:SalesP

:OLAPApp

{location = New York}

:SalesH

{location = Hong Kong}

{location = New York}

Fig. 7. Example using Link Patterns

The local applications, which maintain the local sales databases, are modeled
using the Data Processor. This data is replicated to the backup system in New
York, realized as a Gatekeeper. It thus controls the data flows from the branches
to the data warehouse and to the Düsseldorf branch. It must be guaranteed, that
the data targets get only their designated data, i.e. neither data from Bangalore,
nor from Hong Kong is accessible for the European head office in Düsseldorf.
The data warehouse is realized by a node, which integrates several data sources
using common integration strategies (Integrator Pattern) and aggregates the
data afterwards (Aggregator Pattern), in order to provide OLAP applications
with a homogenous data stock.

Please keep in mind, that the Data Link Model presented in Figure 7 reflects
the logical structure of the information platform, not the physical. This means,
that the nodes of the model do not have to be located on different machines.

6 Related Work

Data Flow analysis and modeling has been a focus of researchers for decades. Ear-
lier work concentrates mainly on data flows in computer architectures and soft-
ware components (e.g. [15, 5]). Later on, data flows were also used for query pro-
cessing and optimization in database systems. For instance, Teeuw and Blanken
[14] compare control versus data flow mechanisms controlling the execution of
database queries on parallel database systems.

Dennis and Misunas present in [6] a Basic Data-Flow language, which ex-
presses graphically the data dependencies within a program. In this data flow
graph model, instructions are represented by nodes and paths stand for data



or control flows. Although this language was originally designed for software
development, it may be seen as an early forerunner, in designing data flows
among different data sources. A specialized data flow graph is introduced by
Eich and Wells [7], which can be used for scheduling database queries within
multiprocessor environments or databases distributed over a network [1]. Thus,
both approaches apply data flow concepts to database processing.

The Link Patterns are tightly coupled to the Design Patterns of the object-
oriented software design [8, 2] and Enterprise Application Integration (EAI) [10],
since they represent prototypes or solutions for recurring problems. Contrary to
these patterns, Link Patterns are not intended to solve recurring problems in
software design or EAI, but to provide modeling and description guidelines for
information grids, focusing exclusively on data flows.

As a possible application field of our Link Patterns we suggest modeling
or visualizing information grids, i.e. heterogeneous environment of data sources
sharing data, or modern information infrastructures, based on P2P concepts (e.g.
[9] or [12]).

7 Conclusion and Future Work

In this paper we have presented Link Patterns as guidelines for modeling and
describing data flows between nodes in information sharing environments. The
Link Pattern Catalog consists of prototypes or solutions for recurring problems
and therewith supports developers to model, describe, and understand complex
information grids. Furthermore the Link Patterns provide a common vocabu-
lary for design and communication purposes, enabling developers to exchange
successfully implemented solutions.

Additionally we have introduced the Data Link Modeling Language (DLML)
for modeling, visualizing, and optimizing data flows, especially suitable for in-
formation grids. This language based on UML consists of a well-defined set of
building blocks, representing data nodes, application nodes and data flows be-
tween them. They can be combined according to specific rules, to build up the
Data Link Model of an information sharing environment.

The concepts we have presented in this paper are ideal to generate a static
model of data and application nodes with their corresponding data flows. In fu-
ture work we have to consider dynamically changing and evolving environments,
in which nodes constantly join or leave the grid. This may not only affect the
Link Pattern Catalog, but also the Data Link Modeling Language. Furthermore
the Catalog has to be enhanced, in order to include novel Link Patterns, not
yet identified. The entire Link Pattern Catalog shall provide developers with an
extensive reference guideline for modeling information sharing environments.

References

1. Lubomir Bic and Robert L. Hartmann. AGM: A Dataflow Database Machine.
ACM Transactions Database Systems, 14(1):114–146, 1989.



2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley
& Sons, Inc., 1996.

3. Mario Cannataro and Domenico Talia. Semantics and knowledge grids: Building
the next-generation grid. IEEE Intelligent Systems, 19(1):56–63, 2004.

4. Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke.
The Data Grid: Towards an Architecture for the Distributed Management and
Analysis of Large Scientific Datasets. Journal of Network and Computer Applica-
tions, 23(3):187–200, 2000.

5. Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A
Formal Evaluation of Data Flow Path Selection Criteria. IEEE Trans. Softw.
Eng., 15(11):1318–1332, 1989.

6. Jack B. Dennis and David P. Misunas. A Preliminary Architecture for a Basic
Data-Flow Processor. In Proceedings of the 2nd Annual Symposium on Computer
Architecture, pages 126–132. ACM Press, 1975.

7. Margaret H. Eich and David L. Wells. Database Concurrency Control Using Data
Flow Graphs. ACM Transactions Database Systems, 13(2):197–227, 1988.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements od Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley Publishing Company, New York, NY,
1995.

9. Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: Data
Management Infrastructure for Semantic Web Applications. In Proceedings of the
twelfth international conference on World Wide Web, pages 556–567, Budapest,
Hungary, 2003.

10. Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. Addison-Wesley,
2003.

11. Cristian Pérez de Laborda and Stefan Conrad. A Semantic Web based Identifica-
tion Mechanism for Databases. In Proceedings of the 10th International Workshop
on Knowledge Representation meets Databases (KRDB 2003), Hamburg, Germany,
September 15-16, 2003, volume 79 of CEUR Workshop Proceedings, pages 123–130.
Technical University of Aachen (RWTH), 2003.

12. Cristian Pérez de Laborda, Christopher Popfinger, and Stefan Conrad. D́ıgame: A
Vision of an Active Multidatabase with Push-based Schema and Data Propagation.
In Proceedings of the GI-/GMDS-Workshop on Enterprise Application Integration
(EAI’04), volume 93 of CEUR Workshop Proceedings, 2004.

13. Peter Pin-Shan Chen. The entity-relationship model-toward a unified view of data.
ACM Transactions on Database Systems (TODS), 1(1):9–36, 1976.

14. Wouter B. Teeuw and Henk M. Blanken. Control versus Data Flow in Paral-
lel Database Machines. IEEE Transactions on Parallel and Distributed Systems,
(4):1265–1279, 1993.

15. Elizabeth Winey. Data Flow Architecture. In Proceedings of the 16th annual
Southeast regional conference, pages 103–108. ACM Press, 1978.


