Zurück zur Übersicht

FairFES - Fast Exact Sampling for Fair Classification

full text: PDF
author/s: Manh Khoi Duong, Nina Liebrand, Stefan Conrad
type:Inproceedings
booktitle:Big Data Analytics and Knowledge Discovery: 27th International Conference, DaWaK 2025, Bangkok, Thailand, August 25–27, 2025, Proceedings
publisher:Springer Nature
pages:55--69
month:August
year:2025
location:Bangkok, Thailand
Abstract

While traditional fairness metrics like statistical disparity evaluate equal treatment across social groups, they fail to account for real-world constraints, such as in hiring, where a predefined acceptance rate across all groups is demanded. To achieve fair datasets for machine learning, we propose two fast and exact sampling methods, FairFESDown and FairFESUp, that are capable of aligning datasets with a specified targeted fairness goal. Unlike existing methods, our approaches have a linear time complexity regarding the datasets’ sizes and can handle non-binary protected attributes. We evaluate our methods on several popular classifiers and datasets from the fairness literature, achieving optimal fairness with statistical disparity scores close to zero while maintaining classification performances similar to the original datasets. Our pre-processing methods outperform existing approaches, including FairGAN, FairSMOTE, and FairUS, regarding statistical disparity, classification accuracy, and runtime.

Heinrich Heine Universität

Datenbanken und Informationssysteme

Lehrstuhlinhaber

Prof. Dr. Stefan Conrad


Universitätsstr. 1
40225 Düsseldorf
Gebäude: 25.12
Etage/Raum: 02.24
Tel.: +49 211 81-14088

Sekretariat

Lisa Lorenz



Universitätsstr. 1
40225 Düsseldorf
Gebäude: 25.12
Etage/Raum: 02.22
Tel.: +49 211 81-11312
Verantwortlich für den Inhalt:  E-Mail senden Datenbanken & Informationssysteme