
A Representation of Time Series for Temporal Web Mining ∗

Mireille Samia

Institute of Computer Science
Databases and Information Systems
Heinrich-Heine-University Düsseldorf

D-40225 Düsseldorf, Germany
samia@cs.uni-duesseldorf.de

Abstract

Data with temporal information is constantly generated, sampled, gathered, and analyzed
in different domains, such as medicine, finance, engineering, environmental sciences, and
earth sciences. Temporal Web mining extends temporal data mining and Web mining, and
concerns the Web mining of data with significant temporal information. Its main goal is to
query local and Web data in real time, analyze these temporal sequences in order to discover
previously unknown important temporal information. Using temporal data as temporal
sequences without any preprocessing fails to extract key features of this data. For this reason,
before applying mining techniques, an appropriate representation of temporal sequences is
needed. This paper emphasizes on the representation of time series for temporal Web mining.

1 Introduction

Temporal Web mining (TWM) concerns the Web mining of data with significant temporal
information. The data can contain temporal knowledge, but it is often treated as static. Hence,
in order to extract important features of this data, we need to find an appropriate representation
of our temporal sequences before applying mining techniques. In the representation of time series
for TWM, we define two main types of data band ranges. Our first data band range is called the
Dangerous Data Band (DDB). DDB consists of the data during the occurrence of a significant
event, such as the values of the rise in sea-level. Our second data band range, the Risky Data
Band (RDB), consists of the data before an important event (such as flooding) occurs. RDB can
be a clue to forecast a significant event, such as flooding. The main advantages of using DDB
and RDB are that we can estimate the weight of each segment and predict its closeness to DDB
and RDB in order to find any early sign that can warn of a crucial event (such as flooding).

In this paper, section 2 provides a brief overview of temporal Web mining, and discusses related
works. In section 3, we present our representation of time series for temporal Web mining.
Section 4 concludes this paper and points out our directions for future work.

2 Overview and Related Work

This section provides an overview of temporal Web mining, and discusses further related work.

2.1 Overview of Temporal Web Mining

Following [9], temporal Web mining is an extension of temporal data mining and Web min-
ing. It can be used in different domains, such as finance, engineering, environmental sciences,
medicine, and earth sciences. Temporal data discovered by the application of temporal data
mining techniques is used in the Web mining process in order to retrieve useful data with tem-
poral information in real time over the Web. The derived useful data with temporal information
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discovered by the application of Web mining techniques is used again in the temporal data
mining process. Thus, we define Temporal Web Mining (TWM) as the process of discover-
ing, extracting, analyzing, and predicting data with significant temporal information from the
temporal information discovered by the application of temporal data mining techniques, and
applying Web mining techniques to this data in real time over the Web [9].

According to [10], TWM supports the temporal aspect of Web data by mining Web data with
temporal information as temporal data, and not as static data. Its purpose is to introduce pre-
diction as a main issue in Web mining, specifically Web content mining. In other words, TWM
aims at predicting temporal data from the content of the Web data. Furthermore, TWM uses
Web data, such as temporal data from the Web, in the temporal data mining process [10].

2.2 Further Related Work

In temporal data mining, the representation of data takes place before defining the similar-
ity measures between sequences and applying actual data mining techniques [1]. The data is
represented into time series by either keeping it in its original form ordered by their instant
of occurrence and without any pre-processing [8], or subsequences of a sequence are obtained
using windowing and by finding a piecewise linear function able to approximately describe the
entire initial sequence [2, 3]. Another approach [1, 6] to represent data into time series data
is segmenting a sequence by iteratively merging two similar segments, that are choosen based
on the squared error minimization. An extension to this method is to associate with each seg-
ment a weight value, in order to define the importance of each segment according to the entire
sequence[5].

In the representation of time series for TWM, we define two main types of data band ranges.
Our first data band range, Dangerous Data Band (DDB), consists of the data during the occur-
rence of a significant event, such as the values of the rise in sea level. Our second data band
range is called the Risky Data Band (RDB). RDB consists of the data before an important
event (such as flooding) happens. RDB can be a clue to forecast a significant event, such as
flooding. According to DDB and RDB, we can estimate the weight of each segment and predict
its closeness to DDB and RDB that help us to find any early sign of a crucial event (such as
flooding).
In our TWM representation of time series, we subdivide a sequence to subsequences. Each sub-
sequence is represented as a continuous function defined on a closed interval. Each subsequence
is divided into equidistant subintervals in order to represent it by a sequence of straight-line seg-
ments. By computing the area under a subsequence and comparing it to the area that separates
it from the Dangerous Data Band or from the Risky Data Band, we can estimate the weight
of each segment of a subsequence. Moreover, we can predict its closeness to DDB and RDB in
order to discover any early warning of a crucial event (such as flooding).
By representing a subsequence as a continuous function, each sequence is represented as a se-
quence of the functions of its subsequences. Storing only the functions of the sequence can reduce
the storage requirements. Furthermore, because the functions are continuous, new unsampled
points can be to a certain extent deduced.

3 TWM Representation of Time Series

This section provides our representation of time series for temporal Web mining.

Specifying the Dangerous Data Band and the Risky Data Band Because we are
dealing with temporal data, which can be an early warning sign to predict to a certain extent
some important events (such as flooding), we define two main types of data band ranges. In
Figure 1, our first data band range, called Dangerous Data Band (DDB), consists of the data
during the occurrence of a crucial event, such as the values of the rise in sea level. DDB varies
between β and λ; i.e. β ≤ DDB ≤ λ, where β < λ.



Our second data band range is the Risky Data Band (RDB). RDB consists of the data before
an important event (such as flooding) occurs. RDB is normally close to DDB. RDB varies
between α and β; i.e. α ≤ RDB < β, where α < β. The data outside DDB or RDB are called
Out-Of-Band Data.

According to DDB and RDB, we can specify if a data point (xi, yi) is a dangerous point, a risky
point or an out-of-band point (i.e. a normal point). More clearly,
if (xi, yi) is a dangerous point, then β ≤ yi ≤ λ, where β < λ and 0 ≤ i ≤ n
if (xi, yi) is a risky point, then α ≤ yi < β, where α < β and 0 ≤ i ≤ n
if (xi, yi) is an out-of-band point, then (yi < α, where 0 ≤ i ≤ n) or (yi > λ, where 0 ≤ i ≤ n)

Figure 1: General Representation of a Subsequence in TWM

Finding the Function of a Subsequence In our TWM representation of time series, we
subdivide sequences into meaningful subsequences. In Figure 1, we represent each subsequence
as a continuous function defined on a closed interval [a, b].

Suppose that a subsequence consists of a set of (n+1) data values ((x0, y0), (x1, y1), ..., (xn,
yn)), where x is the controllable variable (such as time) and y is the measured variable (such
as temperature). It is generally assumed that such data values may be described by a function.
Then, we represent each subsequence as a continuous function defined on a closed interval [a,
b]. Weierstrass approximation theorem states that any continuous function defined on a closed
interval [a, b] can be uniformly approximated as closely as desired by a polynomial function [7].
Then, from the set of data values of a subsequence, we can get the following unique Newton’s
polynomial of degree at most n that passes through the (n+1) data points:

Pn(x) = a0 + a1(x−x0) + a2(x−x0)(x−x1) + ... + an(x−x0)(x−x1)...(x−xn−1),
where ak = f[x0, ..., xk], for k = 0, 1, ..., n.

Pn(x) represents the polynomial function of a subsequence. By representing a subsequence as
a continuous function, each sequence is represented as a sequence of the functions of its subse-
quences. Because the functions are continuous, they allow prediction of new unsampled points.

Segmenting a Subsequence From the previous subsection, we have the function of a sub-
sequence y=f(x) defined on a closed interval [a, b]. In Figure 1, we subdivide the interval [a,
b] into n subintervals of length h. We calculate the function of every straight line joining two
subsequent points (i.e. segment) in order to represent the subsequence by a chain of straight-line
segments. The segment joining the data points (xi, f(xi)) and (xi+1, f(xi+1)) of the subsequence
can be evaluated using the following equation:

y = fi + 1
h (fi+1 − fi)(x − xi), where f(xi) = fi and f(xi+1) = fi+1

A weight value wi is assigned to every segment. The weight of the subsequence is the sum of
products of the weight of each segment with the straight-line segment of each subinterval, and



can be defined as following:
∑n−1

i=0 wi(fi + 1
h(fi+1 − fi)(x − xi))

After all the subsequences of a sequence are segmented, all the weights are initialized to 1. Con-
sequently, if any of the weights are changed, the weights are renormalized [5]. More clearly, if
one of the weights is changed, all the weights are redistributed. For example, if the weight of a
segment is decreased, all other segments will have their weight slightly increased [4].

Approximating the Area under a Subsequence To estimate the weight of a subsequence,
we compute the area that estimates the area under this subsequence f(x). In Figure 2, subdivid-
ing the subsequence into n subintervals of length h and then finding the straight-line segment of
each subinterval leads to n trapezoids. Hence, to approximate the area under a subsequence, we
can use the trapezoidal rule. The area of the n trapezoids Tfi−1fixixi−1

is calculated, and then,
added as follows:

∑n
i=1Ai = h

2 (f0 + fn + 2
∑n−1

i=1 fi), where Ai is the area of the ith trapezoid.
Thus, the area under a subsequence is estimated using the trapezoidal rule in the form:

∑n
i=1Ai = h

2 (f0 + fn) + h
∑n−1

i=1 fi

In Figure 2, we note that the weight of the area of each subinterval Ai is equal to the weight of
its straight-line segment fi−1fi.

Figure 2: The segments are below RDB and DDB

Estimating the Weight of a Segment To find the weight of a specific segment, we esti-
mate the closeness of this segment to the Dangerous Data Band (DDB) or the Risky Data Band
(RDB) (cf. Figure 2). The closer the segment of a subsequence is to DDB or to RDB, the
greater its weight is according to the weight of the entire sequence.

In Figure 2, the closeness of a segment of a subsequence to DDB or to RDB can be estimated by
comparing the area Ai of the trapezoid Tfi−1fixixi−1

and the area Di of the trapezoid Tfi−1fiCiCi−1

(where i varies between 1 and n). For instance, the greater the area of the trapezoid Tfi−1fixixi−1

is according to the area of the trapezoid Tfi−1fiCiCi−1
, the closer the segment fi−1fi is to DDB

or to RDB. In other words, the greater the weight of this segment is according to the weight of
the whole subsequence.
In the previous subsection, we found the area Ai of the trapezoid Tfi−1fixixi−1

. To compute
the area Di of the trapezoid Tfi−1fiCiCi−1

, we calculate the area of the rectangle Rxi−1xiCiCi−1 .
Then, we substract the area Ai of the trapezoid Tfi−1fixixi−1

from the area of the rectangle
Rxi−1xiCiCi−1 . We get the following:

Di =
∣
∣
∣
∣hψ − h

2
(fi + fi−1)

∣
∣
∣
∣ =

∣
∣
∣
∣h(ψ − 1

2
(fi + fi−1))

∣
∣
∣
∣ ,

where ψ is the height of the rectangle Rxi−1xiCiCi−1 and 1 ≤ i ≤ n

From the value of the maximum of fi−1 and fi, we determine the value of ψ to calculate the area



of the rectangle Rxi−1xiCiCi−1 . The length of ψ can be equal to our risky point α, our dangerous
point β or our dangerous point λ. More clearly,
if max(fi−1,fi) < α, then ψ = α; i.e. the segments are below RDB and DDB (cf. Figure 2).
If max(fi−1,fi) > λ, then ψ = λ; i.e. the segments are above DDB and RDB.
If α ≤ max(fi−1,fi) < β, then ψ = β; i.e. the segments belong to RDB.
If β ≤ max(fi−1,fi) ≤ λ, then ψ = λ; i.e. the segments belong to DDB.
Note that if fi−1 is equal to f0 and fi is equal to fn, then we can estimate the weight of the
whole subsequence corresponding to RDB and DDB.

By defining our two main bands the dangerous data band (DDB) and the risky data band RDB),
we assign for every segment of a subsequence a specific type. In other words, if a segment is in
RDB, then, its a risky segment. According to its closeness to risky data band, the importance
of its weight is considered. If the segment is in DDB, then it is a dangerous segment. The
importance of its weight is estimated according to its closeness to the dangerous data band limit.
If a segment is above DDB or below RDB, then it is a normal segment. In other words, its data
values are out-of-band data values. Estimating its closeness to RDB or DDB helps to deduce
how the next segment of the same subsequence can be in order to discover any early warning of
a significant event (such as flooding).

4 Conclusion and Outlook

Because the interest in extracting and analyzing temporal hidden information grows, temporal
Web mining (TWM) extends temporal data mining and Web mining. Its primary goal is to deal
with temporal data, such as local and Web data, in real time over the Web.
In our TWM representation of time series, we define two types of data band range, which are
called the Dangerous Data Band (DDB) and the Risky Data Band (RDB). According to DDB
and RDB, we can estimate the weight of each segment and forecast its closeness to DDB and
RDB in order to find any early sign that can be a clue to a crucial event (such as flooding).

In this paper, we provide a brief overview of temporal Web mining and Web mining, and discuss
related work. Then, we present our time series representation for TWM.

A future work includes the definition of similarity measures between sequences in TWM. En-
hancing the quality of temporal data improves the data representation of time series.
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