
Database Caching: Analysis of Constraint-based Approaches
Exemplified by Cache Groups

Abstract
Caching is a proven means to improve scalability and availability of software systems as well as to reduce latency of
user requests. In contrast to Web caching where single Web objects are kept ready somewhere in caches in the user-
to-server path, database caching uses a full-fledged DBMS as a cache to adaptively maintain sets of records from a
remote DB and to evaluate queries on them. We give an introduction to the new class of constraint-based DB caching,
by the example of cache groups. These cache groups are constructed from parameterized cache constraints, and their
use is based on the key concepts of value and domain completeness. We show how cache constraints affect the cor-
rectness of query evaluations in the cache and which optimizations they allow. Finally, once unsafe cache configura-
tions, whose performance is uncontrollable, are identified, the costs of safe ones can be analyzed quantitatively.

1 Motivation
Transactional Web applications (TWAs) dramatically grow in number and complexity. At the same
time, each application is expected to process increasing data volumes. In such situations, caching is a
proven concept to improve response time and scalability of the applications as well as to minimize com-
munication delays in wide-area networks. Many techniques have therefore emerged in recent years to
keep static Web objects (like XML fragments or images) in caches in the user-to-server path.

As the TWAs must deliver more and more dynamic and frequently updated content, Web caching [6]
should be complemented by techniques that are aware of the consistency and completeness requirements
of cached data (whose source is updated in a backend DB) and that, at the same time, adaptively respond
to changing workloads. Attempts targeting these objectives are called database caching, for which sev-
eral different solutions have been proposed in recent years [1, 2, 3]. Currently many DB vendors are de-
veloping prototype systems or are just extending their current products [e.g., 5, 7].

What is the technical challenge of this approach?
When responses to user requests are assembled
from static and dynamic contents somewhere in a
Web cache, the dynamic portion is generated by a
remote application server (AS), which in turn asks
the backend DB server for up-to-date information,
thus causing substantial latency. An obvious reac-
tion to this performance problem is the migration
of ASs to data centers closer to the users: But this
displacement of ASs to the edge of the Web alone
is not sufficient; conversely it would dramatically
degrade the efficiency of DB support because of

the frequent round trips to the then remote backend DB server. As a consequence, primarily used data
should be kept close to the AS in DB caches (Fig. 1). A flexible solution should not only support DB
caching at mid-tier nodes of central enterprise infrastructures [7], but also at edge servers of content de-
livery networks or remote data centers.

A practical solution should also feature cache transparency, i.e., the application programming inter-
face must not be modified. This gives the cache manager the choice at run time to process a query locally
or to send it to the backend DB server (e.g., in order to comply with strict consistency requirements).

Andreas Bühmann, Theo Härder

University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
{buehmann,haerder}@informatik.uni-kl.de

Fig. 1: Database caching for Web applications

DB
Cache

DB
server

app.
server

Web
server(s)

customers
where region = ‘west’

customers
where region = ‘east’

Web clients application
logic

frontend
DB servers

backend
DB server

DB
Cache

app.
server

ht
tp

SQL

http

SQL

The use of SQL presents another challenge because of its declarative and set-oriented nature: The
cache manager has to guarantee that queries can be processed in the DB cache, i.e., the sets of records
satisfying the corresponding predicates, denoted as predicate extensions, must completely be in the
cache. This completeness condition ensures a query evaluation semantics that is equivalent to the one
provided by the backend.

A federated query facility [1, 5] allows cooperative predicate evaluation by multiple DB servers. This
is important for cache use, because local evaluation of some (partial) predicate can be complemented by
the work of the backend DB server on other (partial) predicates whose extensions are not in the cache.
In the following we refer to predicates meaning their portions to be evaluated in the cache.

2 Constraint-based Database Caching
We take a look at the concepts developed in the DBCache project [1] and explore the underlying ideas;
this work has lead us to a class of techniques which we term constraint-based database caching [4].

Cache groups are collections of related cache tables; cache constraints defined on and between them
determine which records of the corresponding backend tables to keep in the cache. The technique does
not rely on the specification of static predicates: The constraints are parameterized, which makes this
specification adaptive; it is completed when the parameters are instantiated by values of cache keys. An
“instantiated constraint” then corresponds to a predicate and, when the constraint is satisfied—i.e., all
related records have been loaded—the predicate extension delivers correct answers to eligible queries.

The key idea of constraint-based caching is to start with simple base predicates (here equality predi-
cates) and to extend them by other types of predicates (equi-join predicates in our case) in a constructive
way such that cache maintenance can always guarantee the presence of the corresponding predicate ex-
tensions in the cache. Hence, there are no or only simple decidability problems whether or not a complete
predicate evaluation can be performed: Only a simple probe query is required in the cache to determine
the availability of predicate extensions.

For simplicity, the names of tables and columns are identical in the cache and in the backend DB.
Considering a cache table , we denote by its corresponding backend table, by a column of .

If we want to be able to evaluate a given predicate in the cache, we must keep a collection of records
in the cache tables such that the completeness condition for the predicate is satisfied; for simple equality
predicates like this condition takes the shape of value completeness:
Value completeness (VC). A value is said to be value complete in a column if and only if all
records of are in .

If we know that a value is value complete in a column , we can correctly evaluate , be-
cause all rows from the corresponding backend table that carry that value are in the cache. But how
do we know that is value complete? This is easy if we maintain domain completeness of columns.
Domain completeness (DC). A column is said to be domain complete (DC) if and only if all
values in are value complete.

Given a DC column , if a probe query confirms that value is in (a single record suffices),
we can be sure that is value complete and thus evaluate in the cache. Note that unique (U)
cache table columns (defined by SQL constraints in the backend DB schema) are DC per se (implicit
DC); non-unique (NU) columns in contrast need extra enforcement of DC.

So far, we can evaluate only equality predicates in the cache. To enhance such queries with equi-join
predicates, we introduce referential cache constraints.
Referential cache constraint (RCC). RCC between a source column and a target col-
umn is satisfied if and only if all values in are value complete in .

An RCC ensures that, whenever we find a record in , all join partners of with respect
to are in . Note, the RCC alone does not allow us to correctly perform this join in the cache:
Many rows of that have join partners in may be missing from . But using an equality predicate
on a DC column as an “anchor”, we can restrict this join to records that exist in the cache: (

S SB S.c c S

S.c v=
v S.c

σc v= SB S
v S.c S.c v=

SB
v

S.c
v S.c

S.c v S.c
v S.c v=

S.a T.b→ S.a
T.b v S.a T.b

S.a T.b→ s S s
S.a T.b= T

SB TB S
S.c S.c x=

and). In this way DC columns serve as entry points for queries. Domain completeness of a
column is equivalent to a self-RCC ; by specifying such a self-RCC the DBA can enforce
domain completeness of and thus create an entry point for query evaluation explicitly.

How do the records constituting a predicate extension get into the cache? And how are these predicate
extensions actually chosen? For these tasks, we introduce a second kind of cache constraint:
Cache key. A cache key column is always kept domain complete. Only values in initiate cache
loading when they are referenced by user queries.

You can imagine that a cache key includes a self-RCC; it can always be used as an entry point. (The
columns get explicitly DC in both cases.) But in addition, a cache key serves as a filling point for a root
table and—via the RCCs between and related cache tables—for the member tables of the cache
group: Whenever a query references a particular cache key value that is not in the cache, the query has
to be evaluated by the backend DB; but the cache manager satisfies the value completeness for the miss-
ing value by fetching all required records from the backend and loading them into the cache table .
To satisfy the RCCs, the member tables of the cache group are loaded in a similar way (for details see
[1]). Hence, a reference to a cache key value serves as something like an indicator that, in the imme-
diate future, locality of reference is expected on the predicate extension determined by .

Assume a cache group with cache tables , and (cus-
tomer, order, product), formed by and ,
where , and are U columns and and are NU
columns (Fig. 2). As we know, if a probing operation on some do-
main-complete column identifies value , we can use as
an entry point for evaluating . Any enhancement of this
predicate with equi-join predicates is allowed if these predicates
correspond to RCCs reachable from cache table .

Assume, we find ‘gold’ in (of cache group), then the predicate (and
and) can be processed in the cache correctly. Because the predicate extension (with all col-
umns of all cache tables) is completely accessible, any column may be specified for output. Of course,
a correct predicate can be refined by “and-ing” additional selection terms (referring to cache table col-
umns) to it; e.g., (and like ‘Smi%’ and and ...).

3 Cache Group Design and Analysis
At this point, we know how to configure a cache group by specifying the participating tables, the RCCs
connecting them, and the cache keys initiating the population of the cache group. We can use domain-
complete columns as entry points to obtain correct query results for eligible query predicates. Is this all
we need to know to design and to effectively make use of cache groups?

On the one hand, a cache group should enable as flexible use for predicate evaluation as possible: We
should not leave any entry point or RCC unexploited. This requires that we know about all of them, not
just about those we specified explicitly. On the other hand, RCC cycles are easily constructed, which can
lead to excessive population of cache groups. Such “dangerous” load behavior must clearly be prevented.

3.1 Entry points for query evaluation

We have argued that a cache table column can be tested and used correctly by an equality predicate only
if it is domain complete. But how do we know that? Of course, cache table columns that carry either a
self-RCC or a cache key (i.e., at least all filling points) are explicitly domain complete; unique columns
are implicitly domain complete. Cache-supported query evaluation gains much more flexibility and
power, if we can correctly decide that other cache table columns are domain complete as well.

Let us refer again to . Because is the only RCC that induces filling of , we know that
 is domain complete (induced domain completeness). Hence, we can correctly evaluate the query

predicate (and) if we encounter value in . Note, additional RCCs ending in
 would not destroy the DC of , though any additional RCC ending in a column different from

S.a T.b=
S.c S.c S.c→

S.c

S.k πkSB

R R
v

v R

v
v

Fig. 2: Cache group G

NUU NU

NUU NU

C

O

PU
a

b c

dt n

e

G C O, P
C.a O.b→ O.c P.d→

C.a P.d O.b O.c

T.c x T.c
T.c x=

T
C.t G C.t ‘gold’= C.a O.b=

O.c P.d=

C.t ‘gold’= C.n O.e 42>

G C.a O.b→ O
O.b

O.b y= O.c P.d= y O.b
O.b O.b

 would do1: Assume an additional RCC ending in induces a new value , which implies the
insertion of into —just a single record . Now a new value of , so far not present in

, may appear, but all other records of fail to do so. For this reason, a cache table filled by
RCCs (or cache keys) on more than one column cannot have an induced DC column. This means that
induced DC is context dependent; in contrast to explicit or implicit DC it can be lost when a cache group
configuration is modified.

Analogous to extra DC columns, one can discover optimization RCCs in a cache group, i.e., RCCs
that have not been specified, but hold in a given context. For example, in the RCC allows
an additional join direction.

3.2 Safeness of cache groups

It is unreasonable to accept all conceivable cache group configurations, because cache misses on cache
key columns may provoke unforeseeable load operations. Although the cache can be populated asyn-
chronously to the transaction observing the cache miss (avoiding a burden on its response time), this ex-
tra work will influence the transaction throughput in heavy workload situations.

Specific cache group configurations may even exhibit a recursive loading behavior. Once cache fill-
ing is initiated, the enforcement of cache constraints may require multiple phases of record loading. Such
behavior typically occurs, when two NU-DC columns and of a cache table must be maintained.
A set of values appears in , for which is loaded with the corresponding records of to keep
domain complete. These records, in turn, populate with a set of (new) values; all records having one
of these values in must then be loaded into , possibly introducing new values into . As a result,
and may receive new values in a recursive way.

Cache groups are called safe if such recursive loading behavior cannot occur: Upon a cache key miss,
the initiated cache loading always stops after a single filling pass through the cache group. Obviously,
recursive loading requires a cyclic structure among the specified RCCs (remember, every cache key also
contains an RCC). Simple examples show that there are not only unsafe RCC cycles, but also safe ones
(consider a homogeneous cycle involving only one column per table). We analyzed cycles in detail and
derived safeness conditions for cache group configurations. These conditions are more sophisticated
than a simple exclusion of pairs of NU-DC columns (as sketched above), because the mutual introduc-
tion of new values can span several tables and can also be neutralized by compensating effects. Never-
theless the safeness conditions can be stated as a single rule that requires the designer of a cache group
to inspect all contained cycles for certain patterns of U and NU columns.

4 Evaluation of Quantitative Aspects
Having identified unsafe cache configurations, whose performance is unpredictable, we must compare
the safe ones in terms of cost and benefit. The resulting knowledge could lead to a design tool that pro-
poses promising cache configurations.

A first step towards a cost model for cache groups is to answer, how many records of which types
 are loaded after a reference to a cache key value. Even if one makes the standard assumptions of query

optimization (i.e., uniform value distribution in each column, stochastically independent of other col-
umns), difficulties arise: The sets of records dependent on different cache key values can intersect (e.g.
many customers in Fig. 2 may have ordered the same products); therefore, with an increasing number of
cache key values in the cache, the number of records to be loaded for a new one decreases in such situ-
ations. Accordingly, we will gain only an upper bound for if we assume an empty cache.

We denote by the cardinality of a column (the number of different values in a column) and
by the number of records in table . Let us now calculate for all tables in our cache group
example ; we assume all cache tables to be empty and insert a single value into . Value com-

1 We must distinguish between RCCs that only reach a column and RCCs that also fill it: There are RCCs that never cause
the loading of any record (e.g., a self-RCC on a U column) and thus cannot disturb induced DC. How to effectively classify an
arbitrary RCC is still an open issue.

O.b O.e v
σe v= OB O o w o.b

O.b σb w= OB

G O.b C.a→

a b X
a X XB a

b
b X a a

b

nT
T

nT
cS.a SB.a

NS SB nT T
G v C.t

pleteness of requires records; the same number of values appears in . Each of
these values is made value complete in , which forces records into . The
number of different values expected in is not as easily calculated as , because is NU;
the derivation requires stochastic considerations not shown here. The next step (RCC) is sim-
ple again: Column is U, so that records are expected in .

Cache group has a linear structure, which is reflected in the calculation: Each is determined by
at most one other , and there is one that is directly known (here); this also applies to all trees among
possible configurations. In acyclic graphs, we can proceed in a similar way, following a topological or-
der; to calculate , we need only a way to merge the influences of the immediate predecessors of .
New ways of approximating the number of records loaded must be found in the case of an RCC cycle,
where mutual influences occur.

The maintenance costs of cache groups deliver an important building block for a model determining
the setup costs of a cache group which, in turn, is essential for estimating the savings of evaluating a
predicate in the cache. To achieve the required precision of the loading costs, we need to develop a DB
model characterizing the cardinalities of the backend tables, the selectivities of their columns, and the
distribution of their values. On the other hand, a workload model essentially governs the actual cache
group design, because type and frequency of given queries identify the cache keys (controlled by stop-
word lists) and RCCs. Hence, sufficiently accurate models for workload, cache group, and DB are vital
for a quantitative justification of a cache group in a TWA environment. To validate these results, various
kinds of measurements are needed in a real DB cache setting.

5 Conclusions
We have introduced constraint-based database caching using as an example the specific kind of cache
groups proposed in the DBCache project. Cache groups provide predicate completeness for predicates
built constructively from simple base predicates, which are specified as parameterized constraints on
cache tables. This use of parameters gives cache groups a simple kind of adaptability. In the future we
want to explore, how the idea of constraint-based caching can be extended to other types of predicates
(e.g., range or aggregation predicates). Perhaps it is also possible to let evolve cache group specifications
themselves (e.g., by adding or dropping RCCs, when changed join patterns are observed in the work-
load), thus reaching a higher level of adaptability.

The analysis of the basic type of cache groups has shown that one must be aware of the consequences
of a set of specified cache constraints: On the one hand, performance problems due to uncontrolled cache
loading must be prevented; on the other hand, one must know which kinds of predicates can be evaluated
correctly in the cache and must have efficient probe operations to check the availability of predicate ex-
tensions. Furthermore, for each variation of constraint-based caching quantitative analyses must help to
understand which cache configurations are worth the effort.

There are many other issues that wait to be resolved: For example, we have not said anything about
the invalidation of predicates, about the removal of overlapping predicates extensions from the cache, or
about different strategies how updates can be applied to cache and backend.

References
[1] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, H. Pirahesh, B. Reinwald: Cache Tables: Paving the Way for an

Adaptive Database Cache. VLDB Conference 2003: 718–729
[2] K. Amiri, S. Park, R. Tewari, S. Padmanabhan: DBProxy: A Dynamic Data Cache for Web Applications. ICDE Confer-

ence 2003: 821–831
[3] R.G. Bello, K. Dias, A. Downing, J.J. Feenan Jr., J.L. Finnerty, W.D. Norcott, H. Sun, A. Witkowski, M. Ziauddin: Ma-

terialized Views in Oracle. VLDB Conference 1998: 659–664
[4] T. Härder, A. Bühmann: Datenbank-Caching: Eine systematische Analyse möglicher Verfahren, Informatik – Forschung

und Entwicklung, Springer (2004)
[5] P.-Å. Larson, J. Goldstein, J. Zhou: MTCache: Mid-Tier Database Caching in SQL Server. ICDE Conference 2004
[6] S. Podlipinig, L. Böszörmenyi: A Survey of Web Cache Replacement Strategies. ACM Computing Surveys 35:4, 374–398

(2003)
[7] The TimesTen Team: Mid-tier Caching: The TimesTen Approach. SIGMOD Conference 2002: 588–593

C.t nC NC cC.t⁄= C.a
O.b nO nC NO cO.b⁄()= O

dO.c O.c dC.a O.c
O.c P.d→

P.d nP dO.c= P
G nT
nS nC

nT T

	1 Motivation
	Fig. 1: Database caching for Web applications

	2 Constraint-based Database Caching
	Fig. 2: Cache group

	3 Cache Group Design and Analysis
	3.1 Entry points for query evaluation
	3.2 Safeness of cache groups

	4 Evaluation of Quantitative Aspects
	5 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

