
Detecting Logical Errors in SQL Queries

Stefan Brass Christian Goldberg

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

(brass|goldberg)@informatik.uni-halle.de

Abstract

Queries that are contradictory, i.e. always return the empty set, are quite often written
in exams of database courses. Although such queries are obviously not intended, they are
executed in current database management systems (e.g., Oracle) without any warning. Of
course, questions like the satisfiability are in general undecidable, but we give a quite simple
algorithm that can handle a surprisingly large subset of SQL queries. We then analyze
unnecessary logical complications. Furthermore, we discuss possible runtime errors in SQL
queries and show how a test for such errors can be reduced to a consistency check. We believe
that future database management systems will perform such checks and that the generated
warnings will help to develop code with fewer bugs in less time.

1 Introduction

Errors in SQL queries can be classified into syntactic errors and semantic errors. A syntactic
error means that the entered character string is not a valid SQL query. In this case, any DBMS
will print an error message because it cannot execute the query. Thus, the error is certainly
detected and usually easy to correct.

A semantic error means that a legal SQL query was entered, but the query does not always
produce the intended results, and is therefore incorrect for the given task. Semantic errors can
be further classified into cases where the task must be known in order to detect that the query
is incorrect, and cases where there is sufficient evidence that the query is incorrect no matter
what the task is. Our focus in this paper is on this latter class.

For instance, consider the following query:

SELECT *
FROM EMP
WHERE JOB = ’CLERK’ AND JOB = ’MANAGER’

This is a legal SQL query, and it is executed, e.g., in the Oracle9i DBMS without any warning.
However, the condition is actually inconsistent, so the query result will be always empty. Since
nobody would use a database to get a fixed result, we can state that this query is incorrect
without actually knowing what the task of the query was. Such cases do happen. For example,
in one exam exercise that we analyzed, 10 out of 70 students wrote an inconsistent condition.

It is well known that the consistency of formulas is undecidable in first-order logic, and that
this applies also to database queries. However, we will show that many cases that occur in
practice can be detected with relatively simple algorithms.

Our work is also inspired by the program lint, which is or was a semantic checker for the
“C” programming language. Today C compilers do most of the checks that lint was developed
for, but in earlier times, C compilers checked just enough so that they could generate machine
code. We are still at this development stage with SQL today. Printing warnings for strange
SQL queries is very uncommon in current database management systems.



2 Inconsistent Conditions

The full version of the paper contains an algorithm for detecting inconsistent conditions in SQL
queries. Since the problem is in general undecidable, we can handle only a subset of all queries.
However, our algorithm is reasonably powerful and can decide the consistency of surprisingly
many queries. To be precise, consistency in databases means that there is a finite model, i.e. a
relational database state/instance, such that the query result is not empty.

We assume that the given SQL query contains no datatype operations, i.e. all atomic formulas
are of the form t1 θ t2 where θ is a comparison operator (=, <>, <, <=, >, >=), and t1, t2 are
attributes (possibly qualified with a tuple variable) or constants (literals). Our algorithm can
treat null values. Aggregations are excluded, they are subject of our future research.

If the query contains no subqueries, the consistency can be decided with methods known in
the literature, especially the algorithms of Guo, Sun and Weiss [6].

We treat subqueries with a variant of the Skolemization method, well known from the field
of automated theorem proving. For space reasons, we can only give an example here. First, it
suffices to treat EXISTS subqueries. Other kinds of subqueries (IN, >=ALL, etc.) can be reduced
to the EXISTS case.

Let us use the following SQL query as an example. It lists all locations of departments, such
that all departments at the same location have at least one “Salesman”:

SELECT DISTINCT L.LOC
FROM DEPT L
WHERE NOT EXISTS (SELECT *

FROM DEPT D
WHERE D.LOC = L.LOC
AND NOT EXISTS (SELECT *

FROM EMP E
WHERE E.DEPTNO = D.DEPTNO
AND E.JOB = ’SALESMAN’))

The idea of Skolemnization is to introduce names (constants, function symbols) for values that
are required to exist. Tuple variables are existential iff they are declared in a subquery that is
nested in an even number (including 0) of NOT (L and E in the example). Otherwise they are
universal (D in the example).

For existential variables that are not in the scope of a universal quantifier (such as L in
the example), a single tuple is required in the database state. Thus, we introduce a Skolem
constant fL of type DEPT for L. For an existential tuple variable like E that is declared within
the scope of a universal tuple variable (D) a different tuple might be required for every value
for D. Therefore, a Skolem function fE is introduced that takes a value for D as a parameter and
returns a value for E. The function fE has the parameter type DEPT and the result type EMP.
The the Herbrand universe (the set of terms that can be constructed with these constants and
function symbols) is TQ = {fL, fE(fL)}. We write TQ(R) for the terms of type R.

Of course, in general it is possible that infinitely many terms can be constructed. Then we
cannot predict how large a model (database state/instance) must be and our method is not ap-
plicable. However, this requires at least a nested NOT EXISTS subquery (otherwise only Skolem
constants are produced, no real functions). The case with only a single level of NOT EXISTS sub-
queries corresponds to the quantifier prefix ∃∗∀∗, for which it is well known that the satisfiability
of first order logic with equality is decidable (this was proven 1928 by Bernays and Schönfinkel).
However, as the example shows, our method can sometimes handle even heavily nested sub-
queries, because the set of Skolem terms does not necessarily become infinite. In this way, the
sorted logic used in SQL differs from the classical approach.

Once we know how many tuples each relation must have, we can easily reduce the general



case (with subqueries) to a consistency test for a simple formula as treated in [6]. The flat form
of the WHERE-clause is constructed as follows:

1. Replace each tuple variable X of the main query by the corresponding Skolem constant fX .

2. Next, treat subqueries nested inside an even number of NOT: Replace the subquery

EXISTS (SELECT . . . FROM R1 X1, . . ., Rn Xn WHERE ϕ)

by σ(ϕ) with a substitution σ that maps the existential variable Xi to fXi(Yi,1, . . . , Yi,mi),
where Yi,1, . . . , Yi,mi are all universal variables in the scope of which this subquery appears
and which appear in the subquery.

3. Finally treat subqueries that appear within an odd number of negations as follows: Replace
the subquery

EXISTS (SELECT . . . FROM R1 X1, . . ., Rn Xn WHERE ϕ)

by (σ1(ϕ) OR . . . OR σk(ϕ)), where σi are all substitutions that map the variables Xj to
a term in TQ(Rj). Note that k = 0 is possible, in which case the empty disjunction can be
written 1=0 (falsity).

In the above example, we would first substitute L by fL and E by fE(D). Since D is of type
DEPT and fL is the only element of TQ(DEPT), the disjunction consists of a single case with D
replaced by fL. Thus, the flat form of the above query is

NOT(fL.LOC = fL.LOC
AND NOT(fE(fL).DEPTNO = fL.DEPTNO

AND fE(fL).JOB = ’SALESMAN’))

This is logically equivalent to

fE(fL).DEPTNO = fL.DEPTNO AND fE(fL).JOB = ’SALESMAN’

A model (database state/instance) will have two tuples, one (fL) in DEPT, and another (fE(fL))
in EMP. The requirements are that their attributes DEPTNO are equal and that the attribute JOB
of the tuple in EMP has the value ’SALESMAN’.

As in this example, it is always possible to construct a database state that produces an
answer to the query from a model of the flat form of the query.

Constraints can be handled by adding to the query the condition that violations of the
constraint do not exist.

3 Unnecessary Logical Complications

Sometimes, a subcondition is inconsistent, but the entire condition is consistent (e.g., because
of a disjunction). Of course, also the opposite can happen: Subconditions that are tautologies.
Both kinds of unnecessary complications indicate logical misconceptions and it is quite likely
that the query will not behave as expected.

Furthermore, implied subconditions are unnecessary complications. In certain circumstances,
implied subconditions can help the optimizer to find a better execution plan, but then they
should be clearly marked as optimizer hint. In exams, it happens quite often that students add
a condition, such as “A IS NOT NULL” that is already enforced as a constraint.

There are different possible formalizations of the requirement for “no unnecessary logical
complications”. A quite strict version is that whenever in the DNF of the query condition, a



subcondition is replaced by “true” or “false”, the result is not equivalent to the original condition.
This can be reduced to a series of consistency checks. Let the DNF of the query condition be
C1 ∨ · · · ∨ Cm, where Ci = (Ai,1 ∧ · · · ∧ Ai,ni). Then our criterion is satisfied iff the following
formulas are all consistent:

1. ¬(C1 ∨ · · · ∨ Cm), the negation of the entire formula (otherwise the entire formula could
be replaced by “true”),

2. Ci ∧¬(C1 ∨ · · · ∨Ci−1 ∨Ci+1 ∨ · · · ∨Cm), for i = 1, . . . ,m (otherwise Ci could be replaced
by “false”),

3. Ai,1 ∧ · · · ∧ Ai,j−1 ∧ ¬Ai,j ∧ Ai,j+1 ∧ · · · ∧ Ai,ni ∧ ¬(C1 ∨ · · · ∨ Ci−1 ∨ Ci+1 ∨ · · · ∨ Cm) for
i = 1, . . . ,m, j = 1, . . . , ni (otherwise Ai,j could be replaced by “true”).

Another type of unnecessary logical complication is to use a “too general” comparison oper-
ator. (e.g. “>=” when “=” would suffice). Furthermore, unnecessary joins are an important type
of logical complication that was already studied extensively in the literature.

4 Possible Runtime Errors

In conditions of the form A = (SELECT ...), the subquery must not return more than one
value, otherwise a runtime error occurs. Furthermore, when SELECT ... INTO ... is used in
Embedded SQL, the query must return at most one row.

Errors of this type are difficult to find during testing, because they do not always occur.
Especially, if the programmer wrongly assumes that the data always satisfies the necessary
condition, the query will run correctly in all test database states. It would be good if a tool
could verify that such errors do not occur. Of course, the problem is in general undecidable.

The test can be easily reduced to a consistency check. Let the following subquery be given:

SELECT t1, . . ., tk
FROM R1 X1, . . ., Rn Xn

WHERE ϕ

Let S1 Y1, . . ., Sm Ym be the variables from the outer query that are accessed in the subquery
(m = 0 is possible for uncorrelated subqueries). In order to make sure that there are never two
solutions, we duplicate the tuple variables and check the following query for consistency. If it is
consistent (after adding the constraints), the runtime error can occur:

SELECT *
FROM R1 X1, ..., Rn Xn, R1 X ′

1, ..., Rn X ′
n, S1 Y1, . . ., Sm Ym

WHERE ϕ AND ϕ′

AND (X1 6= X ′
1 OR · · · OR Xn 6= X ′

n)

The formula ϕ′ results from ϕ by replacing each Xi by X ′
i. We use Xi 6= X ′

i as an abbreviation
for requiring that the primary key values of the two tuple variables are different. If one of the
relations Ri has no declared key, it is always possible that there are several solutions (if the
condition ϕ is consistent). “SELECT DISTINCT” and “GROUP BY” are treated in the full version
of this paper.

If the query is correlated, it might not be completely clear what knowledge from the outer
condition should be used. In order to be safe, we check whether the subquery cannot return
more than a single row for any given assignment of the tuple variables of the outer query (not
necessarily an assignment that satisfies the conditions of the outer query).

It might be possible to interpret the restriction in a more liberal way. Consider a database
with relations R(A, B) and S(A, B) (A is in both cases the primary key). Let the query be:



SELECT *
FROM R X, R Y
WHERE X.B = (SELECT S.B FROM S WHERE S.A = X.A OR S.A = Y.A)
AND X.A = Y.A

If the conditions are evaluated in the sequence in which they are written down, this would give a
runtime error. If the condition on the tuple variables in the outer query is evaluated first, there
would be no error. Even if the conditions were written in the opposite sequence, it is not clear
whether this query should be considered as ok. After all, the query optimizer should have the
freedom to choose an evaluation sequence. This is a general problem with runtime errors, also
known from programming languages. The SQL-92 standard does not address this problem. If
one should decide that some part of the outer condition is evaluated before the subquery, one
could add that part to our test query.

In Oracle9i, the example does not generate a runtime error: It seems that the condition in the
outer query is evaluated first or pushed down into the subquery (independent of the sequence of
the two conditions). However, one can construct an example with two subqueries, where Oracle
generates a runtime error for ϕ1 AND ϕ2, but not for ϕ2 AND ϕ1. Therefore, the above strict
condition seems right.

5 Conclusions

There is a large class of SQL queries that are syntactically correct, but nevertheless certainly
not intended, no matter what the task of the query might be. One could expect that a good
DBMS prints a warning for such queries, but, as far as we know, no DBMS does this yet.

In this paper we have analyzed some kinds of such semantic errors: Inconsistent conditions,
unnecessary logical complications, and queries that might generate runtime errors. There are
many further types of errors that can be detected by static analysis of SQL queries, a list is
given in the compagnion paper (in these proceedings). A prototype of the consistency test is
available from

http://www.informatik.uni-halle.de/~brass/sqllint/

A new version is currently being developed and will be made available under the same address.

References

[1] F. Bry, R. Manthey: Checking Consistency of Database Constraints: a Logical Basis. In
Proceedings of the 12th International Conference on Very Large Data Bases, 13–20, 1986.

[2] Q. Cheng, J. Gryz, F. Koo, C. Leung, L. Liu, X. Qian, B. Schiefer. Implementation of Two
Semantic Query Optimization Techniques in DB2 Universal Database. Proceedings of the
25th VLDB Conference, 687-698, 1999.

[3] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic query
optimization. ACM Transactions on Database Systems, 15:162–207, 1990.

[4] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, 1973.

[5] T. Gaasterland, P. Godfrey, J. Minker. An Overview of Cooperative Answering. Journal
of Intelligent Information Systems 21:2, 123–157, 1992.

[6] S. Guo, W. Sun, and M. A. Weiss. Solving satisfiability and implication problems in
database systems. ACM Transactions on Database Systems 21, 270–293, 1996.


